
Improving Cross-Lingual Transfer Learning for End-to-End Speech Recognition with Speech Translation

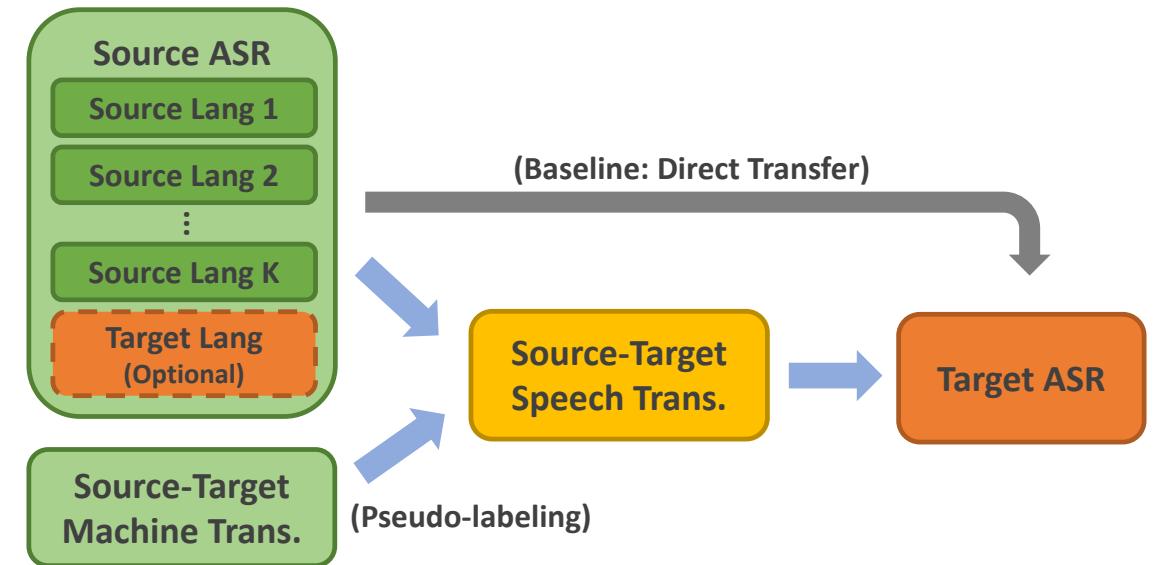
Changhan Wang, Juan Pino, Jiatao Gu

INTERSPEECH 2020

FACEBOOK

- Cross-lingual transfer from high-resource ASR to low-resource ASR
- Attention-based encoder-decoder models
- Transfer via speech-to-text translation (ST) task, so that decoder is pre-trained in the target language
- Up to 24.6% WER reduction on Common Voice and IARPA Babel compared to direct transfer

End-to-End Model Architecture


- Attention-based encoder-decoder models
- Same model architecture for source/target ASR and ST tasks
- Experiments on BLSTM-based encoder/decoder
- Similar application to Transformer-based models
- [Future work] extension to transducer models

Speech Translation Trained with Pseudo-Labels

- Human labels for ST are expensive
- Pseudo-label source ASR data into target language with machine translation (MT) models
- Sequence-level knowledge distillation (KD) of MT labels
- KD-ed labels are simplified and easier to train on

Pre-training ASR on Speech Translation

- Direct transfer (baseline): source ASR → target ASR
- ST-based transfer:
 - [Basic] Source ASR → ST → target ASR
 - [Simplified] ST → target ASR
 - [Enhanced] Source + target ASR → ST → target ASR
- Decoder pretrained in target language
- Incorporating additional knowledge of the target language

Datasets

- **Common Voice (CV), IARPA Babel (BB), LibriSpeech (LS)**
- **High resource (source) ASR:**
CV En & Fr, LS
- **Low resource (target) ASR:**
CV, BB
- **MT: OPUS indexed datasets**

	Dataset	Train	Speakers
Source ASR			
CV	Common Voice: English	477h	15.2k
CV _{Fr}	Common Voice: French	264h	1.8k
LS	LibriSpeech	960h	2.3k
MC	MuST-C: En-Nl	422h	2.2k
Target ASR			
Vi	IARPA Babel 107b-v0.7	96h	0.6k
Ht	IARPA Babel 201b-v0.2b	70h	0.3K
Pt	Common Voice v4	10h	2
Zh-CN	Common Voice v4	10h	22
Nl	Common Voice v4	7h	78
Mn	Common Voice v4	3h	4

	Dataset	En/Fr Sent.	Model
Vi	OpenSubtitles	4M/3M	Base
Ht	JW300	220K/220K	Base 3+3
Pt	OpenSubtitles	33M/23M	Big
Zh	MultiUN	10M/10M	Big
Nl	OpenSubtitles	37M/25M	Big
Mn	JW300+GNOME+QED	210K/203K	Base 3+3
Nl _W	WikiMatrix	511K/-	Base 3+3
Nl _S	OpenSubtitles	37M/-	Base 3+3
Nl _M	OpenSubtitles	37M/-	Base

ST-Enhanced Cross-Lingual Transfer

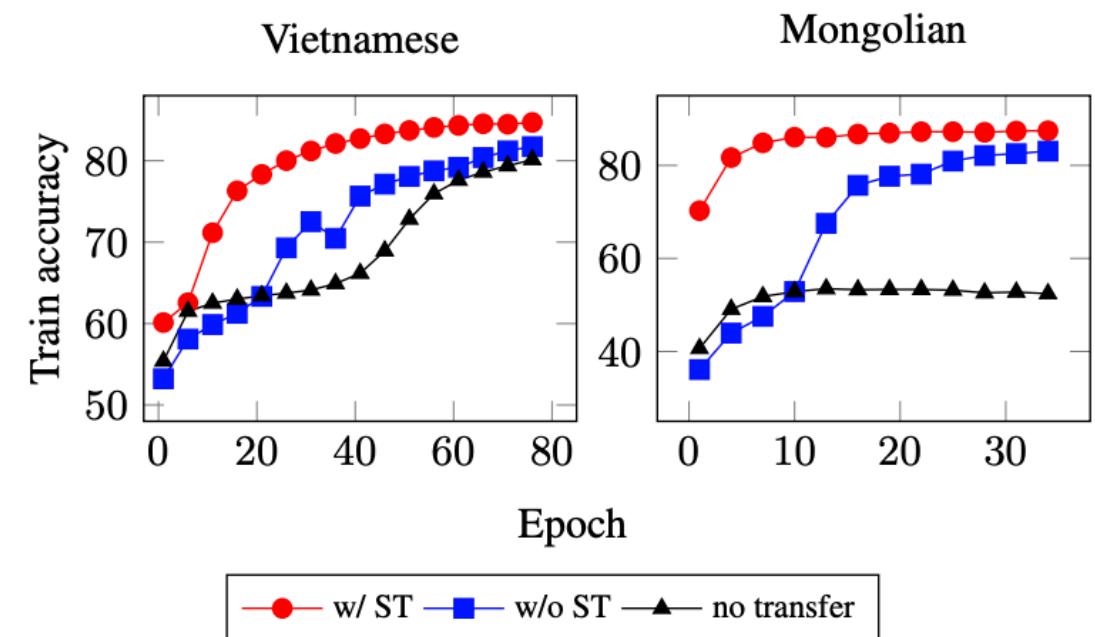
- Source ASR: monolingual (En) & multilingual (En+Fr)
- Up to 24.6% WER reduction on Common Voice and IARPA Babel
- Up to 8.9% WER reduction with pseudo ST labels from low-resource MT

	Vi	Ht	Pt	Zh-CN	Nl	Mn
Baseline	57.2	66.1	62.3	90.3	96.5	109.7
From English						
CV	Src ASR	53.7	60.7	40.9	41.3	44.2
	+ ST	52.5 (-2.2%)	59.3 (-2.3%)	33.7 (-17.6%)	35.3 (-14.5%)	42.0 (-5.0%)
	Src+Tgt ASR	51.6	58.1	34.7	37.0	42.5
CV+LS	+ ST	51.2 (-0.8%)	57.2 (-1.5%)	31.2 (-10.1%)	35.2 (-4.9%)	40.4 (-4.9%)
	Src ASR	54.7	59.9	41.3	40.0	42.2
	+ ST	52.9 (-3.3%)	57.4 (-4.2%)	31.8 (-23.0%)	35.7 (-4.2%)	37.9 (-10.2%)
CV+CV _{Fr}	Src+Tgt ASR	52.7	57.8	34.4	36.4	41.7
	+ ST	52.2 (-0.9%)	57.2 (-1.0%)	31.2 (-9.3%)	35.5 (-2.5%)	38.8 (-7.0%)
	Src ASR	54.5	59.4	39.5	39.2	43.0
CV+CV _{Fr}	+ ST	51.7 (-5.1%)	57.8 (-2.7%)	29.8 (-24.6%)	33.6 (-14.3%)	38.4 (-10.7%)
	Src+Tgt ASR	52.9	57.1	31.7	36.4	40.7
	+ ST	52.0 (-1.7%)	55.7 (-2.5%)	28.6 (-9.8%)	32.9 (-9.6%)	38.3 (-5.9%)
From English+French						
CV+CV _{Fr}	Src ASR	54.5	59.4	39.5	39.2	43.0
	+ ST	51.7 (-5.1%)	57.8 (-2.7%)	29.8 (-24.6%)	33.6 (-14.3%)	38.4 (-10.7%)
	Src+Tgt ASR	52.9	57.1	31.7	36.4	40.7
CV+CV _{Fr}	+ ST	52.0 (-1.7%)	55.7 (-2.5%)	28.6 (-9.8%)	32.9 (-9.6%)	38.3 (-5.9%)
	Src ASR	54.5	59.4	39.5	39.2	43.0
	+ ST	51.7 (-5.1%)	57.8 (-2.7%)	29.8 (-24.6%)	33.6 (-14.3%)	38.4 (-10.7%)

MT Models for Pseudo-Labeling

- How MT labels affect ST-enhanced transfer?
- MuST-C En-NI ASR/ST
- Human labels from MuST-C
- MT labels from
 - Nl_W : Small model on WikiMatrix (0.5M examples)
 - Nl_S , Nl_M , and Nl : small, medium, and large model on OpenSubtitles (noisy, 37M)

		ST Label (NA for baseline transfer)					
		NA	Nl_W	Nl_S	Nl_M	Nl	Real
MT	-	24.8	34.0	34.1	35.6	100.0	
	ST	18.9	23.7	23.9	24.0	23.9	
ASR	+CV	18.6	23.3	22.6	23.1	-	
	+CV	44.7	42.4	43.1	43.2	43.9	43.9


Pseudo-Label Sampling and Filtering

- Pseudo-labels (PL) from beam search decoding
- K predictions given beam size K
- Sample PLs in each epoch from the top N ($N \leq K$) to alleviate overfitting
- PLs from low-resource MT may be of low quality
- Filter examples with PLs of low confidence

Effectiveness of ST Pre-training

- ST decoder trained in target language
- “Closer” to target ASR than source ASR (decoder trained in source languages)
- ST → target ASR is supposed to be faster than source ASR → target ASR

ST without ASR Pre-training

- Simplified one-step transfer: ST → target ASR
- Still brings gains in most cases
- Lack of source ASR pre-training brings difficulties to ST training

	Vi	Ht	Pt	Zh-CN	Nl	Mn
ASR	54.5	59.4	39.5	39.2	43.0	67.7
ASR→ST	51.7	57.8	29.8	33.6	38.4	62.1
ST	53.7	58.7	32.5	35.3	<u>44.1</u>	67.3

Thank you!

FACEBOOK