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Abstract

Direct speech-to-speech translation (S2ST) models suffer from
data scarcity issues as there exists little parallel S2ST data, com-
pared to the amount of data available for conventional cascaded
systems that consist of automatic speech recognition (ASR),
machine translation (MT), and text-to-speech (TTS) synthesis.
In this work, we explore self-supervised pre-training with unla-
beled speech data and data augmentation to tackle this issue. We
take advantage of a recently proposed speech-to-unit translation
(S2UT) framework that encodes target speech into discrete rep-
resentations, and transfer pre-training and efficient partial fine-
tuning techniques that work well for speech-to-text translation
(S2T) to the S2UT domain by studying both speech encoder
and discrete unit decoder pre-training. Our experiments show
that self-supervised pre-training consistently improves model
performance compared with multitask learning with a BLEU
gain of 4.3-12.0 under various data setups, and it can be further
combined with data augmentation techniques that apply MT to
create weakly supervised training datam

Index Terms: speech-to-speech translation, self-supervised
pre-training, data augmentation

1. Introduction

Direct speech-to-speech translation (S2ST) aims at translating
speech from one language into speech in another language with-
out relying on text generation as an intermediate step [1H6].
Compared to conventional cascaded approaches [7,8]], which
take advantage of automatic speech recognition (ASR), ma-
chine translation (MT) or end-to-end speech-to-text translation
(S2T) followed by text-to-speech synthesis (TTS), direct S2ST
has the advantage of faster inference [4] and can support trans-
lation between languages without text writing systems [[2-41(6].
Most recently, [4] proposes to apply a self-supervised
speech encoder pre-trained on unlabeled speech to convert tar-
get speech into discrete units [9] and build a speech-to-unit
translation (S2UT) model for direct S2ST. Self-supervised dis-
crete targets can disentangle linguistic content from speaker
identity and prosodic information in speech [[10]. Moreover,
they enable opportunities for applying techniques from speech-
to-text model training, such as ASR and S2T, to direct S2ST.
As we move along the spectrum from multi-stage to di-
rect approaches, the amount of parallel data available becomes
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! Audio samples are available  at: https://
facebookresearch.github.io/speech_translation/
enhanced_direct_s2st_units/index.htmll Code
and pre-trained models are available at: https://github.
com/pytorch/fairseq/blob/main/examples/speech_
to_speech/docs/enhanced_direct_s2st_discrete_
units.md

much more scarce. Pre-training, including initializing en-
coder or decoder trained from ASR or MT tasks, or from self-
supervised pre-training with unlabeled data [[11H14], multitask
learning [11}|15]] and data augmentation [13,|1618]] have been
extensively studied for tackling the data scarcity issue for S2T.
For direct S2ST, [1,/4] show that multitask learning is crucial
for model convergence, and [1}/19] focus on incorporating pre-
trained modules from ASR, S2T, MT or TTS tasks.

In this work, we take advantage of the S2UT framework
proposed in [4] and show that large-scale self-supervised pre-
training with monolingual speech and text data and data aug-
mentation techniques that benefit S2T model training can also
be applied on S2UT model training. For pre-training, we trans-
fer the technique from [14]], which performs efficient finetuning
with a wav2vec 2.0 speech encoder [20] and an mBART text
decoder [21], to S2UT with a wav2vec 2.0 speech encoder and
an mBART decoder trained with discrete units extracted from
unlabeled speech data. For data augmentation, we utilize ASR,
MT and TTS models to create weakly supervised data [[16].

The contributions of this work are as follows: we empiri-
cally demonstrate that self-supervised encoder and decoder pre-
training with unlabeled speech and partial finetuning improve
S2ST training under various setups, including training with syn-
thetic single-speaker or real multi-speaker target speech, and
low-resource setup (30-hr). We further improve the model via
data augmentation with weakly supervised data and conduct ex-
periments with the combination of multiple datasets to achieve
strong performance over ASR+MT+TTS baseline systems.

2. Related Work

Self-supervised speech encoder pre-training has led to huge per-
formance improvement on a wide range of applications [22]]
such as ASR [20,23], S2T [18]], speaker identification [24],
etc. SpeechT5 [25] proposes end-to-end pre-training, where the
model learns to reconstruct the log Mel-filterbank of the masked
regions of the input speech, to improve performance of speech-
to-speech tasks such as voice conversion and speech enhance-
ment, while it was not evaluated in the context of direct S2ST.

The improved quality of speech units discretized based on
self-supervised speech representations also allows researchers
to apply natural language processing (NLP) techniques on
speech, such as spoken generative language modeling [9,
26|, and emotion conversion cast as a unit-to-unit translation
task [27]. [27] further applies text-based autoencoder denois-
ing on units for model pre-training. In this work, we model
the target speech as discrete units, extend the monolingual unit
pre-training in [27] to a multilingual setup, and perform speech
encoder and discrete unit decoder pre-training separately.

Data augmentation is a common method for increasing the
size of training data. Synthetic speech data from TTS [16}28],
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Figure 1: Flowchart for the speech encoder and decoder pre-
training and finetuning process. The blocks in shade illustrate
the modules that are finetuned in the LNA-D finetuning strategy
(Sec. @), which we find is the most effective.

self-training [18}29] or back-translation [30] from unlabeled
data have been shown to be useful to ASR or S2T. In this work,
we apply MT and TTS to prepare weakly supervised S2ST data
from speech in the source language.

3. System
3.1. Speech-to-unit translation (S2UT) model

We follow [4] and encode the target speech as discrete units
with a HuBERT model trained on unlabeled speech followed by
a k-means model learned from its hidden representations [23].
Waveform input is encoded into a sequence of k-means cluster
indices at every 20-ms frame, and we remove consecutive du-
plicate units to create a reduced unit sequence representing the
target speech. In the end, the direct S2ST system consists of a
sequence-to-sequence S2UT model with a speech encoder and a
unit decoder, followed by a unit HiFi-GAN vocoder [10] trained
separately for unit-to-waveform conversion. In this work, we
explore both encoder and decoder pre-training (Fig. [I).

3.2. Model pre-training
3.2.1. Encoder pre-training: wav2vec 2.0

Wav2vec 2.0 [20] is a self-supervised framework to learn
speech representations from unlabeled audio data. It uses a
multi-layer convolution neural network to encode the audio fol-
lowed by a Transformer-based [31] context encoder to build the
contextualized representations. The model is trained via con-
trastive loss with masked spans on the input to the context en-
coder. In this work, we use Conformer [32] instead of the Trans-
former [31]] for better model performance (Sec.[4.5.2).

3.2.2. Decoder pre-training: unit mBART

mBART |[21]] was originally proposed for denoising autoen-
coder over text sequences. During training, the sequence-to-
sequence model predicts the original text x given its noisy ver-
sion, g(x), created by randomly masking spans of x. The start-
ing position of each span is uniformly sampled from all posi-
tions, and the span lengths are sampled from a Poisson distribu-
tion (A, or span_size). The masking process is repeated until
the total accumulated span lengths take up p% (or mask_ratio)
of the input sequence. The model is trained on text data from
multiple languages with language tags. In our case, we treat the
reduced discrete units extracted from unlabeled speech data as

text and apply mBART training. A standard Transformer-based
encoder-decoder architecture [|31]] as in MT is used.

3.3. Model finetuning

We combine the wav2vec 2.0 encoder and the mBART decoder
and study the finetuning strategies in [[14]. A randomly initial-
ized adaptor layer consisting of a single 1-D convolutional layer
with stride 2 is added between the pre-trained modules to in-
crease the model’s capacity to alleviate the mismatch between
the learned representations, as well as length difference between
the source audio and the reduced target units.

We examine both full and partial finetuning of the model.
For the latter, we focus on the LayerNorm and Attention mod-
ules (dubbed as “LNA”) proposed in [14]. The hypothesis
is that LayerNorm parameters reflect the statistics of the pre-
training data, and the encoder attention in the unit mBART de-
coder is optimized for unit sequence input. The adaptor layer
is fully finetuned. We explore four finetuning strategies in to-
tal: 1. LNA-E: The LayerNorm and self attention parameters
in the encoder and all the parameters in the decoder are fine-
tuned. 2. LNA-D: The whole encoder and the LayerNorm and
encoder attention in the decoder are finetuned. We optionally
freeze the encoder for the first £ updates. 3. LNA-E,D: Only
LNA parameters are finetuned both on the encoder and the de-
coder side. 4. Full: We finetune the whole model end-to-end
with an option of freezing the encoder for the first k updates.

3.4. Data augmentation

We take advantage of speech from ASR data in the source lan-
guage to increase the size of the parallel S2ST training data.
We use a Transformer MT model [31] to translate the text tran-
scription in the source language to text in the target language.
To convert text in the target language into target speech, we
apply a text-to-unit (T2U) model [|6]]'} which is a Transformer-
based sequence-to-sequence model trained on text and the cor-
responding discrete unit sequence extracted from the paired au-
dio. The T2U model is a way to bypass the TTS generation
and HuBERT unit extraction pipeline for efficient generation of
large-scale weakly supervised data. We choose to distill knowl-
edge from MT models instead of pursuing self-training, since
a three-stage cascaded system (ASR+MT+TTS) can take ad-
vantage of a large amount of data from each component during
training and still outperforms existing direct S2ST systems [4].

4. Experiments

We conduct experiments on Spanish-English (Es-En) and
English-Spanish (En-Es) translation with FAIRSEQ [33}34].

4.1. Data

Table [l summarizes the statistics of all the datasets used in
the experiments. We experiment with two types of parallel
S2ST data. First, we follow the convention of applying single-
speaker TT on the target text of S2T data [[1,[3-5] (dubbed as
“S§28T-syn”’). We combine S2T datasets from multiple domains
to improve the robustness of model training [51}|52], resulting
in 196-hr training data for Es-En and 571-hr for En-Es. We also
combine the dev sets from all domains for tracking the train-
ing process and checkpoint selection, and conduct evaluation on

2https://github.com/pytorch/fairseq/blob/
main/examples/speech_to_speech/docs/textless_
s2st_real_data.md

5 En: https://huggingface.co/facebook/tts_
transformer—en-1jspeech, Es: https://huggingface.
co/facebook/tts_transformer—-es—cssl0
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Table 1: Statistics of datasets (train/dev/test splits). TTS is ap-
plied on the target text of S2T for creating synthetic S2ST data.

‘ # samples source (hrs) target (hrs)
S2T, Es-En
CoVoST-2 [35] 789k / 133k /13.2k  112/22.0/22.7 81.0/14.4/-
Europarl-ST [36 7.4k / 1.9k / 1.8k 20.6/54/5.1 21.8/56/-
mTEDXx [37] 35.6k / 888 /989 63.4/15/1.7 58.6/14/-
S2T, En-Es
Europarl-ST [36] 31.6k/ 1.3k / 1.3k 75.6/3.0/2.9 76.5/3.0/-
MuST-C [38] ‘ 260k / 1.3k / 2.4k 495/2.5/4.1 481/2.5/-
S2ST, Es-En
VoxPopuli [6:39] [ 159k /-/ - 532.1/-1/- 513.1/-1/-
S2ST, En-Es
VoxPopuli [6/39] \ 126k / -/ - 414.7/-/ - 424.1/-1/-
ASR, Es
MLS [40] 220k / 2.4k / 2.4k 918/10.0/10.0 -
Comnum\bme70[4lj‘ 196k / 15.3k / 153k 290/25.7/26.2 -
ASR, En
Librispeech [42 282k / 5.6k / 5.5k 960/10.5/10.7 -
TED-LIUMS3 [43] ‘ 268k /507 / 1.2k 452/1.6/2.6 -
Unlabeled Speech, Es
VoxPopuli [39 \ 2.0M 16k -
Unlabeled Speech, En
VoxPopuli [39] 1.8M 14k -
Librilight [44] ‘ 18.6M 60k -
Parallel Text, Es-En & En-Es
OpenSubtitle2018 [45] 64.TM - -
UNCorpus [46] 25M - -
EUBookshop v2 [47] 5.3M - -
Europarl v10 [48] 1.9M - -
Wikipedia v1.0 [49] 1.8M - -
TED2020 v1 [50] 0.4M - -

all test sets. The second S2ST dataset is from VoxPopuli 53],
which contains speech from European parliament plenary ses-
sions and the oral interpretation (dubbed as “S2S87-real””). We
use the same training data in [6]] and apply the speech normal-
izer from the 1-hr setup on the target speech.

The wav2vec 2.0 speech encoder and unit mBART are pre-
trained on unlabeled speech data. For VoxPopuli [53], we re-
move utterances from the year 2012 and before to avoid overlap
with the Europarl-ST [36] dev and test data. For data augmen-
tation, we use all the ASR data and the text transcriptions of
the source speech in the S2T datasets to train the ASR models,
and all the parallel text data to train the MT models.

4.2. Model setup

We use the multilingual HuBERT (mHuBERT) model, k-means
model and unit-based HiFi-GAN vocoder from [6ﬂ to encode
target speech into a vocabulary of 1000 units. The mHuBERT
and the k-means models are learned from the combination of
En, Es and French unlabeled speech data from VoxPopuli 53],
while we use them to encode En and Es target speech only.

We train the Conformer wav2vec 2.0 speech encoder with
the LARGE configuration [20] using Libri-light [44] for En
and VoxPopuli [53] for Es, respectively, for 200k updates with
a batch size of 19.4-hr for Es and 14.7-hr for En. We train
the unit mBART with the LARGE configuration [31] using
the combination of all En and Es unlabeled speech for 500k
updates with A = 10 and p = 0.3, and we do not use the
sentence permutation noise. During finetuning, we tune the
hyper-parameters including learning rate ([5e-5, 1e-4]), dropout
([0.1, 0.3]) and also encoder specific ones namely mask channel
length ([10, 32, 64]), mask probability ([0.1, 0.5]) and channel
mask probability ([0.1, 0.5]) on the dev sets.

4.3. Baselines

We build two cascaded baselines, ASR+MT+TTS and
52T+TT and two supervised S2UT baselines: 1. ASR: The

En ASR model is finetuned with CTC from the Conformer
wav2vec 2.0 model. We apply the same training for Es but find
that a supervised ASR model with the s2t _transformer_1
architecture in FAIRSEQ is better. 2. MT: As the ASR mod-
els are trained with normalized text (e.g. lowercase, digits in
spoken form, etc.), we apply text normalization on both source
and target texts as well to train Es-En and En-Es MT models.
We use the transformer_wmt _en_de_big architecture in
FAIRSEQ. The MT models are also used in data augmenta-
tion. 3. S2T: The S2T model consist of the pre-trained Con-
former wav2vec 2.0 encoder and a randomly initialized text de-
coder with 6 Transformer layers, 8 attention heads, 256 embed-
ding size and 2048 FFN embedding size, and is trained on the
S2T datasets without multitask learning. 4. Supervised S2UT:
We follow the same model configuration in [4]] to train Trans-
former-based S2UT models and explore both without and with
multitask learning. For the latter we include two auxiliary tasks
that use character sequences from source and target text tran-
scripts as targets.

4.4. Evaluation

To evaluate the translation quality, we use open-sourced ASR
modelsﬂto transcribe the audios and compute BLEU scores us-
ing SACREBLEU [54]. The reference text is normalized to low-
ercase, punctuation is removed, digits are converted to spoken
forms, and all words in parentheses like “(Applause)” or “(Mu-
sic)” are removed. We do not consider samples with empty
translation after text normalization. To evaluate the naturalness
of the speech output, we collect mean opinion scores (MOS) on
ascale of 1 (the worst) to 5 (the best) from human listening tests
on a set of 200 utterances randomly sampled across all the test
sets for each system, and each sample is rated by 7 raters.

4.5. Results
4.5.1. S28T with model pre-training

Table [2] shows results from models trained with “S2ST-syn”
data. We also provide BLEU from the synthetic targets (11)
to demonstrate the impact of ASR errors. First, we see that
without multitask, the supervised Es-En S2UT model (3) can-
not converge properly with the combined 196-hr training set,
while multitask learning helps model training (4).

Next, we see that with a pre-trained wav2vec 2.0 encoder
and a randomly initialized decoder, we can achieve an average
of 4.0 BLEU gain on En-Es test sets and 5.8 BLEU for Es-En
(4 vs. 5). As we incorporate a unit mBART decoder, we find
that LNA-D is the most effective finetuning strategy, yielding
an average of 6.3 BLEU gain on En-Es test sets and 8.0 BLEU
on Es-En compared to multitask learning (4 vs. 7). Our best En-
Es S2ST model performs on par with the S2T+TTS baseline,
and the Es-En S2ST model outperforms the cascaded system
by 2.7 BLEU (1 vs. 7). Though the S2T system can be further
improved with text-based pre-training, this is beyond our scope.

Further incorporating weakly supervised training data from
ASR speech can bring +2.1 BLEU on En-Es and +3.3 BLEU
on Es-En (7 vs. 10). We can also compare this system with the
three-stage cascaded system, as they incorporate information
from the same amount of supervised ASR and MT data. We see
that the En-Es direct system can outperform ASR+MT+TTS,

4En: https://huggingface.co/facebook/
wav2vec2-large-960h-1v60-self, Es:
https://huggingface.co/jonatasgrosman/
wav2vec2-large-xlsr-53-spanish
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Table 2: Dev / test BLEU on all the datasets included in the “S2ST-syn” data. All S2UT systems are decoded with beam size 10. MOS
is reported with 95% confidence interval. (w2v2-L: wav2vec 2.0 LARGE)

En-Es Es-En
BLEU MOS BLEU MOS

D Europarl-ST ~ MuST-C combined CoVoST-2  Europarl-ST mTEDx combined
Cascaded systems:

1 | S2T (w2v2-L)+TTS 33.0/326 30.3/30.1 | 3.80£0.12 | 259/284  269/23.6 253/21.5 | 3.53£0.14
2 | ASR+MT+TTS 28.9/28.8 36.4/34.2 - 37.3/338 333/29.1 293/324 -
S2UT systems without pre-training:

3 | S2UT (w/o multitask) [4] 23.8/24.0 25.0/233 - 0.0/0.0 0.0/0.0 0.1/0.0 -

4 | S2UT (w/ multitasks) 4] 255/258  263/243 | 397 £0.09 | 20.6/22.7 204/18.0 20.2/169 | 3.26 = 0.09
S2UT systems with model pre-training:

5 | w2v2-L 289/284 299/296 | 3.35+£0.15 | 26.1/29.3 259/23.1 27.8/225 | 3.15£0.14
6 | w2v2-L + mBART (LNA-E) 30.6/304  30.2/28.7 - 2421/269 24.0/21.6 245/19.6 -

7 | w2v2-L + mBART (LNA-D) 31.5/31.9  32.1/30.7 | 406+£0.10 | 27.8/30.9 28.9/253 22.1/25.5 | 2.81 £0.16
8 | w2v2-L + mBART (LNA-E,D)  27.8/30.2  23.9/26.1 - 26.4/29.5 27.1/249 24.0/21.7 -

9 | w2v2-L + mBART (full) 29.4/29.0 30.0/27.1 - 262/29.2 253/23.0 233/23.0 -
S2UT systems with model pre-training and data augmentation:

10 | w2v2-L + mBART (LNA-D) 33.5/33.7 34.5/33.1 - 309/341 31.9/282 30.8/29.3 -

11 | Synthetic target 89.4/- 86.3 /- - 81.3/- 85.87/- 88.4/- -

Table 3: Dev and test BLEU on Europarl-ST from models
trained with the “S2ST-real” data.

En-Es Es-En
dev test dev test
w/ multitask [[6] - 21.8 - 18.8

w2v2-L + mBART (LNA-D) 262 265 252 23.1

Table 4: Dev and test BLEU from models trained with 10-hr,
50-hr, and 100-hr subsets of “S2S8T-syn”. Results are averaged
from the multiple datasets of each language direction.

hours En-Es Es-En

dev  test dev test
w/ multitask [4] 10 0.5 0.5 0.8 0.7
w2v2-L + mBART (LNA-D) 10 0.2 0.3 0.5 0.6
w/ multitask [4] 30 7.6 7.9 8.2 7.4
w2v2-L + mBART (LNA-D) 30 104 107 132 124
w/ multitask [4] 50 9.7 10.1 119 11.1
w2v2-L + mBART (LNA-D) 50 148 147 203 195
w/ multitask [4] 100 12.1 13.1 156 14.6
w2v2-L + mBART (LNA-D) 100 | 26.0 25.1 248 238

while there is a 1.2 BLEU gap for Es-En systems (2 vs. 10).

For MOS, Table [2] shows that the En-Es S2UT system pro-
duces more natural speech than Es TTS does (1 vs. 7), while the
quality of the Es-En S2UT output is much worse. Note that the
naturalness of the output speech is mainly controlled by the unit
vocoder, and we use the models from [[6] without finetuning.

One advantage of self-supervised pre-training is that it only
uses speech data and can work for unwritten languages. We
finetune on “S2S57T-real” data and compares with [6] that incor-
porates an auto-encoding auxiliary task to predict the discrete
units extracted from the source speech. We use dev and test sets
from Europarl-ST, since it’s in the same domain as the “S2S7-
real” data. Table[3]shows a 4.7 and 4.3 BLEU gain for En-Es
and Es-En with LNA-D.

Finally, we study the effect of pre-training, with a decreas-
ing amount of parallel data for finetuning by randomly sampling
a subset from the “S2ST-syn” training data. Table [4| compares
LNA-D finetuning with supervised S2UT models trained with
multitask learning. When training on less than 100 hours of
data, we reduce the supervised S2UT model to 8 encoder lay-
ers and 4 decoder attention heads. We see an average 4.6-12.0

BLEU gain from pre-training and LNA-D finetuning for both
language directions when training with more than 30 hours of
data. Pre-training and finetuning with 50-hr data can already
outperform supervised systems trained with 100-hr data. How-
ever, when the amount of parallel data is decreased to 10 hrs,
both multitask learning and pre-training cannot work.

4.5.2. Model variations
First, we examine Conformer vs. Transformer wav2vec 2.0. We
perform finetuning with the pre-trained encoder and a randomly
initialized unit decoder using Es-En “S287-syn” data and see
that Conformer wav2vec 2.0-LARGE model gives an average
4.6 BLEU gain compared with Transformer LARGE model.
Next, we study how A and p affect unit mBART by train-
ing the model for 300k updates and finetuning on a unit-to-unit
translation task, where both source and target speech are con-
verted to reduced discrete unit sequences. From Table[5] we do
not see large difference except when p = 0.3 and A = 5.

Table 5: Average BLEU on “S2S8T-syn” En-Es dev sets with
respect to hyper-parameters used in unit mBART training.

A\, span_size
En-Es dev BLEU 5 10 15
03 | 22.7 236 232
p, mask_ratio 0.5 | 23.2 23.1 23.5
0.7 | 234 235 233

5. Conclusions

In this work, we study self-supervised pre-training and data aug-
mentation for direct S2ST models. We take advantage of an
S2UT framework that encodes target speech into discrete repre-
sentations, apply wav2vec 2.0 speech encoder and unit mBART
decoder pre-training and perform partial finetuning. Experi-
ments under various setups including synthetic and real target
speech and low-resource all verify the effectiveness of the ap-
proach. We also show that applying MT to create weakly su-
pervised data from speech in the source language can be further
combined with pre-training to improve model performance.

6. Acknowledgements

We would like to thank Justine Kao and Brian Bui for the help
on MOS evaluation.



[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

7. References

Y. Jia, R. J. Weiss et al., “Direct speech-to-speech translation with
a sequence-to-sequence model,” Proc. Interspeech, 2019.

A. Tjandra, S. Sakti et al., “Speech-to-speech translation between
untranscribed unknown languages,” in ASRU, 2019.

C.Zhang, X. Tan et al., “UWSpeech: Speech to speech translation
for unwritten languages,” arXiv:2006.07926, 2020.

A.Lee, P-J. Chen et al., “Direct speech-to-speech translation with
discrete units,” arXiv:2107.05604, 2021.

Y. Jia, M. T. Ramanovich et al., “Translatotron 2: Robust direct
speech-to-speech translation,” arXiv:2107.08661, 2021.

A. Lee, H. Gong et al., “Textless speech-to-speech translation on
real data,” arXiv:2112.08352, 2021.

A. Lavie, A. Waibel et al., “JANUS-III: Speech-to-speech trans-
lation in multiple languages,” in ICASSP, 1997.

S. Nakamura, K. Markov et al., “The ATR multilingual speech-to-
speech translation system,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 14, no. 2, pp. 365-376, 2006.

K. Lakhotia, E. Kharitonov et al., “Generative spoken language
modeling from raw audio,” arXiv:2102.01192, 2021.

A. Polyak, Y. Adi et al., “Speech resynthesis from discrete
disentangled self-supervised representations,” arXiv:2104.00355,
2021.

A. Bérard, L. Besacier et al., “End-to-end automatic speech trans-
lation of audiobooks,” in ICASSP, 2018.

P. Bahar, T. Bieschke et al., “A comparative study on end-to-end
speech to text translation,” in ASRU, 2019.

M. C. Stoian, S. Bansal et al., “Analyzing asr pretraining for low-
resource speech-to-text translation,” in /JCASSP, 2020.

X. Li, C. Wang et al., “Multilingual speech translation from effi-
cient finetuning of pretrained models,” in ACL, 2021.

R. J. Weiss, J. Chorowski et al., “Sequence-to-sequence models
can directly translate foreign speech,” Proc. Interspeech, 2017.

Y. Jia, M. Johnson et al., “Leveraging weakly supervised data to
improve end-to-end speech-to-text translation,” in JCASSP, 2019.

J. Pino, Q. Xu et al., “Self-training for end-to-end speech transla-
tion,” Proc. Interspeech, 2020.

C. Wang, A. Wu et al., “Large-scale self-and semi-supervised
learning for speech translation,” arXiv:2104.06678, 2021.

T. Kano, S. Sakti et al., “Transformer-based direct speech-to-
speech translation with transcoder,” in SLT, 2021.

A. Baevski, Y. Zhou et al., “wav2vec 2.0: A framework for self-
supervised learning of speech representations,” Neurips, vol. 33,
pp. 12449-12 460, 2020.

Y. Liu, J. Gu et al., “Multilingual denoising pre-training for neural
machine translation,” Transactions of the Association for Compu-
tational Linguistics, vol. 8, pp. 726-742, 2020.

S.-w. Yang, P--H. Chi et al., “SUPERB: Speech processing uni-
versal performance benchmark,” arXiv:2105.01051, 2021.

W.-N. Hsu, B. Bolte ef al., “HuBERT: Self-supervised speech
representation learning by masked prediction of hidden units,”
arXiv:2106.07447, 2021.

S. Chen, C. Wang et al., “WavLM: Large-scale self-supervised
pre-training for full stack speech processing,” arXiv:2110.13900,
2021.

J. Ao, R. Wang et al., “SpeechT5: Unified-modal encoder-
decoder pre-training for spoken language processing,”’
arXiv:2110.07205, 2021.

E. Kharitonov, A. Lee et al., “Text-free prosody-aware generative
spoken language modeling,” arXiv:2109.03264, 2021.

F. Kreuk, A. Polyak er al., “Textless speech emotion
conversion using decomposed and discrete representations,”
arXiv:2111.07402, 2021.

[28]

[29]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

A. Tjandra, S. Sakti et al., “Machine speech chain with one-shot
speaker adaptation,” Proc. Interspeech, 2018.

J. Kahn, A. Lee et al., “Self-training for end-to-end speech recog-
nition,” in ICASSP, 2020.

T. Hayashi, S. Watanabe et al., “Back-translation-style data aug-
mentation for end-to-end asr,” in SLT, 2018.

A. Vaswani, N. Shazeer et al., “Attention is all you need,” in
Neurips, 2017, pp. 5998-6008.

A. Gulati, J. Qin et al., “Conformer: Convolution-augmented
Transformer for speech recognition,” Proc. Interspeech, 2020.

M. Ott, S. Edunov et al., “fairseq: A fast, extensible toolkit for se-
quence modeling,” in Proc. NAACL-HLT 2019: Demonstrations,
2019.

C. Wang, Y. Tang et al., “fairseq S2T: Fast speech-to-text model-
ing with fairseq,” in AACL: System Demonstrations, 2020.

C. Wang, A. Wu et al., “Covost 2 and massively multilingual
speech-to-text translation,” arXiv:2007.10310, 2020.

J. Iranzo-Séanchez, J. A. Silvestre-Cerda et al., “Europarl-st: A
multilingual corpus for speech translation of parliamentary de-
bates,” in ICASSP, 2020.

E. Salesky, M. Wiesner et al., “Multilingual tedx corpus for
speech recognition and translation,” in Proc. of Interspeech, 2021.

R. Cattoni, M. A. Di Gangi et al., “Must-c: A multilingual cor-
pus for end-to-end speech translation,” Computer Speech & Lan-
guage, vol. 66, p. 101155, 2021.

C. Wang, M. Riviere et al., “Voxpopuli: A large-scale multilin-
gual speech corpus for representation learning, semi-supervised
learning and interpretation,” arXiv:2101.00390, 2021.

V. Pratap, Q. Xu et al., “MLS: A large-scale multilingual dataset
for speech research,” arXiv:2012.03411, 2020.

R. Ardila, M. Branson et al., “Common voice: A massively-
multilingual speech corpus,” arXiv:1912.06670, 2019.

V. Panayotov, G. Chen et al., “Librispeech: an asr corpus based
on public domain audio books,” in ICASSP, 2015.

F. Hernandez, V. Nguyen et al., “TED-LIUM 3: twice as much
data and corpus repartition for experiments on speaker adap-
tation,” in International conference on speech and computer.
Springer, 2018, pp. 198-208.

J. Kahn, M. Riviere et al., “Libri-light: A benchmark for ASR
with limited or no supervision,” in ICASSP, 2020.

P. Lison, J. Tiedemann et al., “OpenSubtitles2018: Statistical
rescoring of sentence alignments in large, noisy parallel corpora,”
in LREC, 2018.

M. Ziemski, M. Junczys-Dowmunt et al., “The united nations par-
allel corpus v1. 0,” in LREC, 2016.

R. Skadips, J. Tiedemann et al., “Billions of parallel words for
free: Building and using the EU bookshop corpus,” in LREC,
2014.

P. Koehn, “Europarl: A parallel corpus for statistical machine
translation,” in Proc. machine translation summit x: papers, 2005.

K. Wotk and K. Marasek, “Building subject-aligned comparable
corpora and mining it for truly parallel sentence pairs,” Procedia
Technology, vol. 18, pp. 126-132, 2014.

N. Reimers and I. Gurevych, “Making monolingual sentence em-
beddings multilingual using knowledge distillation,” in EMNLP,
2020.

T. Likhomanenko, Q. Xu et al., “Rethinking evaluation in asr: Are
our models robust enough?” arXiv:2010.11745, 2020.

W. Chan, D. Park er al., “Speechstew: Simply mix all avail-
able speech recognition data to train one large neural network,”
arXiv:2104.02133, 2021.

C. Wang, M. Riviere et al., “VoxPopuli: A large-scale multilin-
gual speech corpus for representation learning, semi-supervised
learning and interpretation,” in ACL, 2021.

M. Post, “A call for clarity in reporting BLEU scores,” in Proc.

the Third Conference on Machine Translation: Research Papers,
2018, pp. 186-191.



A. Model Training Hyper-parameters
A.1. Wav2vec 2.0

To train the wav2vec 2.0 models, we use the
wav2vec2_conformer_large_librivox configura-
tion defined in FAIRSEQ. The model contains 24 Conformer
blocks with model dimension 1024, inner dimension 4096, 16
attention heads and a total of 620.5M parameters. We use a total
batch size of 14.7-hr for En and 19.4-hr for Es, and dropout 0.1.
We use Adam with 81 = 0.9,32 = 0.98,¢ = 107°, weight
decay of 0.1 and learning rate 0.005, and apply polynomial
decay learning rate schedule with 32k warmup steps. We
started the training with fpl6 initially but switched to fp32
when we encountered NaNs in the back propagation. Rest of
the hyper-parameters are listed in Table[6]

Table 6: Hyper-parameters used in wav2vec 2.0 training

hyper-parameter En Es
max tokens per GPU | 550,000 | 700,000
#GPUs 256 400
max positions 5000 5000
update freq 6 4
max updates 220,000 | 188,000

A.2. Unit mBART

We use the mbart_large architecture defined in FAIRSEQ to
train the unit mBART. The model contains 12 Transformer lay-
ers in both encoder and decoder, embedding size 1024, feed-
forward network (FFN) dimension 4096, 16 attention heads
and a total of 353M parameters. Different from original text
mBART, we do not apply sentence permutation noise in the de-
noising task, and we only apply masking noise. We use Adam
with 81 = 0.9, B2 = 0.999, € = 10~ ° and learning rate 0.0003,
and apply polynomial decay learning rate schedule with 10000
warmup steps. The model is trained with dropout 0.1, mask
probability 0.3, A = 10 for 500k steps. We use 1024 max to-
kens with 64 GPUs and update frequency 9.

A.3. Supervised S2UT baselines

To train the supervised S2UT models with multitasks, we use
the s2ut_transformer_fisher configuration defined in
FAIRSEQ. We use Adam with 81 = 0.9, 82 = 0.98,¢ = 1078,
weight decay of 0.1 and learning rate 0.0005, and apply inverse
square root learning rate schedule with 10k warmup steps. For
En-Es, we use a max tokens value of 3000, dropout value of
0.1 and 16 GPUs. For Es-En, we use 4500 max tokens value,
dropout 0.3 and 8 GPUs.

For auxiliary tasks, we have a Transformer decoder on the
sixth layer of the encoder for source character prediction and
a Transformer decoder on the eighth layer of the encoder for
target character prediction. Each of the multitasks has a loss
weight of 8. The decoders have 2 Transformer layers with 256
embedding size and FFN dimension of 2048.

A.4. Finetuning

We use a learning rate of 0.0005, a dropout value of 0.1, en-
coder layerdrop value of 0.1 and label smoothing 0.2 for both
language directions. We set the mask prob value to 0.3 and
mask channel prob value to 0.25 in the wav2vec 2.0 encoder.
For the decoder, we use the same embedding parameters for the

input and output. We use Adam with 81 = 0.9, 52 = 0.98,¢ =
1075, weight decay of 0.1 and apply inverse square root learn-
ing rate schedule with 10k warmup steps. We finetune the mod-
els for 15k updates with “S2ST-syn” data and 25k updates when
incorporating the weakly supervised data. We use max tokens
of 3500 for En-Es and 4500 for Es-En, set the update frequency
to 15 and train on 16 GPUs. The mask channel length and the
number of updates we freeze the wav2vec 2.0 encoder in the
beginning for each of the setups is listed in the Table[7]

Table 7: Hyper-parameters used in wav2vec 2.0 and mBART
finetuning

#Parameters En-Es Es-En

Finetuned mask channel encoder mask channel encoder

(Millions) length freeze steps length freeze steps
w2v2-L 628.9 64 5000 32 5000
w2v2-L + mBART (LNA-E) 335.1 64 0 32 0
w2v2-L + mBART (LNA-D) 725.7 32 5000 64 0
w2v2-L + mBART (LNA-E.D) 2333 64 0 32 0
w2v2-L + mBART (full) 827.4 64 5000 32 0
Data augmentation:
w2v2-L + mBART (LNA-D) 725.7 32 5000 | 32 0

A.5. Low-resource setup

Table [§] lists the statistics of the training data used in the low-
resource setup. We use the same set of hyper-parameters for the
wav2vec 2.0 and mBART finetuning on the low-resource setup
as described in Sec. except for the ones listed in Table [9]
Finally, Table @] lists the BLEU scores on each dataset under
the low-resource setup, whose average values are presented in
Table[d]

Table 8: Duration (hours) of the training data sampled from
each dataset in the low-resource setup

En-Es Es-En
total hours | Europarl-ST ~ MuST-C ‘ CoVoST-2  Europarl-ST mTEDx
10 1.4 8.6 5.8 1.0 32
30 4.0 26.0 17.2 3.0 9.9
50 6.7 434 28.7 52 16.1
100 13.5 86.5 574 10.2 323

Table 9: Hyper-parameters used in low-resource LNA-D fine-
tuning experiments

En-Es Es-En
learning  mask channel encoder learning  mask channel encoder
hours
rate length freeze steps rate length freeze steps
10 0.0005 32 5000 0.0005 64 0
30 0.001 64 0 0.0005 32 0
50 0.0005 32 5000 0.0005 32 0
100 0.0005 32 5000 0.0005 64 0




Table 10: Dev / test BLEU on all the datasets included in the “S2ST-syn” data in the low-resource setup.

En-Es BLEU Es-En BLEU

hours  Europarl-ST MuST-C CoVoST-2  Europarl-ST mTEDx

w/ multitask [4] 10 0.6/0.7 0.3/0.3 12710 1.0/0.9 0.3/0.3

w2v2-L + mBART (LNA-D) | 10 0.3/0.4 0.2/0.1 0.3/0.8 0.7/0.7 0.3/0.2

w/ multitask [4] 30 81/79 7.0/17.8 9.2/9.5 8.0/6.8 74176.0
w2v2-L + mBART (LNA-D) | 30 109/11.2 9.9/10.2 | 15.1/17.1 11.8/10.3 12.5/9.7
w/ multitask [4]] 50 10.4/10.4 89/7/9.8 125/13.6  11.7/10.2 11.5/9.4
w2v2-L + mBART (LNA-D) | 50 14.7/15 1497145 | 22.3/247  203/18.2 18.2/15.4
w/ multitask [4]] 100 13.3/13.6 11.0/12.6 | 16.6/18.2 15.1/13.1 15.1/12.6
w2v2-L + mBART (LNA-D) | 100 25.6/258 265/244 | 26/28.6 25.8/23.1 22.6/19.6




	1  Introduction
	2  Related Work
	3  System
	3.1  Speech-to-unit translation (S2UT) model
	3.2  Model pre-training
	3.2.1  Encoder pre-training: wav2vec 2.0
	3.2.2  Decoder pre-training: unit mBART

	3.3  Model finetuning
	3.4  Data augmentation

	4  Experiments
	4.1  Data
	4.2  Model setup
	4.3  Baselines
	4.4  Evaluation
	4.5  Results
	4.5.1  S2ST with model pre-training
	4.5.2  Model variations


	5  Conclusions
	6  Acknowledgements
	7  References
	A  Model Training Hyper-parameters
	A.1  Wav2vec 2.0
	A.2  Unit mBART
	A.3  Supervised S2UT baselines
	A.4  Finetuning
	A.5  Low-resource setup


